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CRISPR-Cas: 
The Next Generation

Cas9 was the first CRISPR associated protein 
researchers used outside of prokaryotic cells, and it 
is still the most commonly used genome editing tool 
today.2,3 It uses a 20-nucleotide spacer and targets 
the 5’-NGG (where N represents any nucleotide) 
protospacer adjacent motif (PAM).3,4 As a type II 
system, Cas9 generates double-stranded DNA 
(dsDNA) cuts with blunt ends.

Researchers improved targeting by engineering 
Cas9 variants. The 5’-NGG PAM limits target site 
availability to roughly one per eight base pairs.1 
Cas9 variants or orthologues that recognize 
different or multiple PAMs—such as xCas9, which 
recognizes 5’-NG, 5’-GAA, and 5’-GAT—overcome this 
limitation.5,6 Engineering secondary structures in 
guide RNA spacer regions also improves targeting 
specificity, thereby creating a barrier to strand 
invasion at off-target sites without overly affecting 
on-target activity.7

Cascade is a multimeric DNA-targeting complex that binds DNA via PAM and spacer recognition and then 
recruits Cas3 to generate a single-strand nick, followed by 3ʹ to 5ʹ degradation of the targeted DNA.11,12 
Cascade recognizes more PAM sequences than other Cas proteins, giving the Cascade-Cas3 system greater 
target site flexibility.13 Researchers are looking to Cas3’s unique cutting mechanism as a antimicrobial tool, 
given that Cas3 is endogenously essential for the degradation of foreign DNA in prokaryotes.14

Modifying Cas9
Cas9 normally targets dsDNA, but it can also target single-stranded (ss) nucleic acids if PAM-
presenting oligonucleotides (PAMmers) are used. PAMmers anneal to single stranded DNA or RNA, 
thereby directing Cas9 to single-stranded targets.19 Termed ‘RCas9’ (RNA-targeting Cas9), this 
system allows researchers to detect endogenous RNA without genetically encoded tags and to 
control cellular processes at the transcript level through site-specific cleavage of ssRNA.19,20

A number of Cas9 orthologues, such as Campylobacter jejuni Cas9, also target RNA. C. jejuni Cas9 
binds and cleaves endogenous RNAs without PAM guidance, while Francisella novicida Cas9 
targets bacterial mRNA and alters gene expression.21,22 Researchers continue to study any potential 
physiological consequences of Cas9 RNA targeting in eukaryotic cells.2

Beyond On/Off:  
Dynamic Genetic and  
Epigenetic Regulation
CRISPR-Cas9 regulates gene function by serving as a DNA 
recognition complex rather than as a targeted nuclease.23 For 
example, binding catalytically deficient Cas9 (dCas9) to DNA 
elements creates gene silencing steric CRISPR interference 
(CRISPRi) that hinders RNA polymerases.24 Additionally tethering 
dCas9 to transcription repressor domains enhances this effect.25 
The reverse is also possible: fusing dCas9 to activator effectors 
results in programmed transcription activation, or CRISPR 
activation (CRISPRa).26 This enables researchers to direct synergistic 
gene activation by using CRISPRa with synthetic transcription 
factors or combining different activator domains, an important feature 
for cellular reprograming.27-29 dCas9-based tools also enable targeted 
epigenetic modifications such as the acetylation and methylation of histones 
and methylation of DNA.23

Cas9 function can be dynamically controlled. Chemical compounds or light, for example, can activate Cas9 
expression through inducible promoters. Scientists use this approach to generate animal models for research 
where timed gene knockout is desired or necessary.30 Inducible Cas9 function gives researchers efficient, 
tunable, and reversible disease modeling capability and helps shed light on stem cell differentiation and 
development mechanisms.31,32 

An Eye on the Clinic
How CRISPR-Cas technology shapes the future of disease 
research and medicine
Rather than gene insertion/deletion, gene editing is now the main 
focus for the CRISPR-Cas system.2 This has obvious implications 
for genetic diseases caused by mutations, but editing may be a 
valid strategy for restoring physiological states in more common, 
complex diseases. For example, CRISPR-Cas9 disruption of the 
cholesterol homeostasis gene Pcsk9 in mice reduced levels of 
low-density lipoprotein cholesterol.33 CRISPR-Cas also modulates 
cells ex vivo to create candidates for cell-based therapeutics. Gene 
editing approaches have enhanced the properties of autologous T 
cells for immunotherapy and immunoncology.34,35

Before CRISPR-Cas can fully transition into the clinic, scientists need 
to overcome a number of obstacles. The biggest challenge lies in potential 
off-target effects and immunogenicity. Optimizing guide RNA selection and screening 
with greater sensitivity can address the former, while identifying and re-engineering immunogenic epitopes 
may ameliorate the latter.2 Finally, adeno-associated viruses, the most popular delivery vector for CRISPR-
Cas machinery, have limited capacity. Faced with this, researchers are investigating smaller Cas protein 
orthologues as well as non-viral delivery methods such as lipid nanoparticles.36

Cas12a is a type V system, which means that it 
generates a staggered dsDNA cut with a 5’ overhang 
and does not use a transactivating CRISPR RNA 
(crRNA). This provides advantages in certain 
situations, such as integrating DNA sequences in a 
specific orientation. Cas12 can also generate its own 
crRNAs by cleaving crRNA arrays, enabling scientists 
to perform multiplex gene editing using only a single 
crRNA array.8

The first endogenous Cas12a orthologues with 
activity in mammalian cells recognize the PAM 
sequence 5’-TTTV. Newer engineered variants not 
only have higher editing activity for this canonical 
TTTV sequence, but also recognize and act on other 
PAMs including 5ʹ-TYCV, 5ʹ-VTTV, 5ʹ-TTTT, 5ʹ-TTCN, 
and 5ʹ-TATV.9,10

Cas9  (formerly known as Cas5, Csn1, or Csx12) Class 2 Type II

Cas12  (formerly known as Cpf1)  Class 2 Type V Cascade-Cas3  Class 1 Type 1

Unlike most other Cas proteins, Cas13a is an RNA-
guided RNA-targeting nuclease that activates upon 
recognition of ssRNA target sequences.15 After target 
binding, Cas13a cuts at uracil bases anywhere in 
the local vicinity, potentially collaterally cleaving 
nearby, untargeted RNAs. Researchers used this to 
create a molecular detection platform aptly named 
SHERLOCK, where collateral RNA cleavage releases 
a reporter signal.16 SHERLOCK detects viral and 
bacterial pathogens, discriminates between single-
nucleotide polymorphisms in the human genome, 
and identifies cell-free, mutated tumor DNA.16,17 

Beyond imaging, Cas13 has also been adapted for 
single-base RNA editing. Consisting of a catalytically 
deficient Cas13 (dCas13) fused to adenosine 
deaminase, the REPAIR system makes directed 
adenosine-to-inosine edits in eukaryotic cells.18 
dCas13 can also be fused with other RNA editing 
domains to enable cytidine-to-uridine editing.2

Cas13  (formerly known as C2c2) Class 2 Type VI
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The development of CRISPR-Cas systems transformed genome 
engineering. Driven by nucleic acid sequences, CRISPR-Cas 
targeting made genetic manipulation much more accessible, 
leading to a wide array of breakthroughs in basic, translational,  
and medical science.1

The CRISPR-Cas success story has inspired scientists to 
discover and create new CRISPR-Cas systems, including those 
that can target RNA, epigenetic modifications, or chromatin 
interactions. The next generation of CRISPR-Cas systems 
expands the power and potential of CRISPR-Cas, improving 
biological understanding and inching closer to the ultimate 
goal of clinical use.2


